Feature Selection based on PCA and PSO for Multimodal Medical Image Fusion using DTCWT

نویسندگان

  • Padmavathi K
  • Mahima Bhat
  • Maya V. Karki
چکیده

Multimodal medical image fusion helps to increase efficiency in medical diagnosis. This paper presents multimodal medical image fusion by selecting relevant features using Principle Component Analysis (PCA) and Particle Swarm Optimization techniques (PSO). DTCWT is used for decomposition of the images into low and high frequency coefficients. Fusion rules such as combination of minimum, maximum and simple averaging are applied to approximate and detailed coefficients. The fused image is reconstructed by inverse DTCWT. Performance metrics are evaluated and it shows that DTCWT-PCA performs better than DTCWT-PSO in terms of Structural Similarity Index Measure (SSIM) and Cross Correlation (CC). Computation time and feature vector size is reduced in DTCWT-PCA compared to DTCWT-PSO for feature selection which proves robustness and storage capacity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimodal Image Fusion Algorithm Using Dual-Tree Complex Wavelet Transform and Particle Swarm Optimization

In this paper, a multimodal image fusion algorithm based on multiresolution transform and particle swarm optimization (PSO) is proposed. Firstly, the source images are decomposed into low-frequency coefficients and high-frequency coefficients by the dual-tree complex wavelet transform (DTCWT). Then, the high-frequency coefficients are fused by the maximum selection fusion rule. The low-frequenc...

متن کامل

Multimodal medical image fusion based on Yager’s intuitionistic fuzzy sets

The objective of image fusion for medical images is to combine multiple images obtained from various sources into a single image suitable for better diagnosis. Most of the state-of-the-art image fusing technique is based on nonfuzzy sets, and the fused image so obtained lags with complementary information. Intuitionistic fuzzy sets (IFS) are determined to be more suitable for civilian, and medi...

متن کامل

Multimodal Biometric Using a Hierarchical Fusion of a Person's Face, Voice, and Online Signature

Biometric performance improvement is a challenging task. In this paper, a hierarchical strategy fusion based on multimodal biometric system is presented. This strategy relies on a combination of several biometric traits using a multi-level biometric fusion hierarchy. The multi-level biometric fusion includes a pre-classification fusion with optimal feature selection and a post-classification fu...

متن کامل

A Hierarchical Fusion Strategy based Multimodal Biometric System

Biometric performance improvement is a challenging task. In this paper, a hierarchical strategy fusion based on multimodal biometric identification systems is presented. This strategy relies on a combination of several biometric traits using a multi-level biometric fusion hierarchy. The multi-level biometric fusion includes a pre-classification fusion with optimal feature selection and a post-c...

متن کامل

Medical Image Fusion based on Shearlets and Human Feature Visibility

Medical image fusion is a technique that integrates complementary information from multimodality images. The fused image is more suitable for treatment plan strategies. In this paper, an efficient medical image fusion method has been proposed based on shearlet transform and human visibility feature as fusion rule. Image fusion rule is the solution that influences the quality of image fusion. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1701.08918  شماره 

صفحات  -

تاریخ انتشار 2017